Smooth adversarial examples

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating Adversarial Examples with Adversarial Networks

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires mor...

متن کامل

Semantic Adversarial Examples

Deep neural networks are known to be vulnerable to adversarial examples, i.e., images that are maliciously perturbed to fool the model. Generating adversarial examples has been mostly limited to finding small perturbations that maximize the model prediction error. Such images, however, contain artificial perturbations that make them somewhat distinguishable from natural images. This property is...

متن کامل

Spatially Transformed Adversarial Examples

Recent studies show that widely used deep neural networks (DNNs) are vulnerable to carefully crafted adversarial examples. Many advanced algorithms have been proposed to generate adversarial examples by leveraging the Lp distance for penalizing perturbations. Researchers have explored different defense methods to defend against such adversarial attacks. While the effectiveness of Lp distance as...

متن کامل

Synthesizing Robust Adversarial Examples

Neural network-based classifiers parallel or exceed human-level accuracy on many common tasks and are used in practical systems. Yet, neural networks are susceptible to adversarial examples, carefully perturbed inputs that cause networks to misbehave in arbitrarily chosen ways. When generated with standard methods, these examples do not consistently fool a classifier in the physical world due t...

متن کامل

Generating Natural Adversarial Examples

Due to their complex nature, it is hard to characterize the ways in which machine learning models can misbehave or be exploited when deployed. Recent work on adversarial examples, i.e. inputs with minor perturbations that result in substantially different model predictions, is helpful in evaluating the robustness of these models by exposing the adversarial scenarios where they fail. However, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: EURASIP Journal on Information Security

سال: 2020

ISSN: 2510-523X

DOI: 10.1186/s13635-020-00112-z